链接:https://vjudge.net/problem/HDU-1240

Task

You’re in space. You want to get home. There are asteroids. You don’t want to hit them.

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

A single data set has 5 components:

Start line - A single line, “START N”, where 1 <= N <= 10.

Slice list - A series of N slices. Each slice is an N x N matrix representing a horizontal slice through the asteroid field. Each position in the matrix will be one of two values:

‘O’ - (the letter “oh”) Empty space

‘X’ - (upper-case) Asteroid present

Starting Position - A single line, “A B C”, denoting the <A,B,C> coordinates of your craft’s starting position. The coordinate values will be integers separated by individual spaces.

Target Position - A single line, “D E F”, denoting the <D,E,F> coordinates of your target’s position. The coordinate values will be integers separated by individual spaces.

End line - A single line, “END”

The origin of the coordinate system is <0,0,0>. Therefore, each component of each coordinate vector will be an integer between 0 and N-1, inclusive.

The first coordinate in a set indicates the column. Left column = 0.

The second coordinate in a set indicates the row. Top row = 0.

The third coordinate in a set indicates the slice. First slice = 0.

Both the Starting Position and the Target Position will be in empty space.

Output

For each data set, there will be exactly one output set, and there will be no blank lines separating output sets.

A single output set consists of a single line. If a route exists, the line will be in the format “X Y”, where X is the same as N from the corresponding input data set and Y is the least number of moves necessary to get your ship from the starting position to the target position. If there is no route from the starting position to the target position, the line will be “NO ROUTE” instead.

A move can only be in one of the six basic directions: up, down, left, right, forward, back. Phrased more precisely, a move will either increment or decrement a single component of your current position vector by 1.

Sample

input:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
START 1
O
0 0 0
0 0 0
END
START 3
XXX
XXX
XXX
OOO
OOO
OOO
XXX
XXX
XXX
0 0 1
2 2 1
END
START 5
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
0 0 0
4 4 4
END

output:

1
2
3
1 0
3 4
NO ROUTE

Solution

用node来表示一个状态,包含位置x,y,z和从起点走到这里的步数d,定义起点begin_pos终点end_pos,每个位置处可能走的6个方向directionmap记录迷宫,1表示可以走;visit记录一个位置有没有被走过。 用BFS,每个节点处对下一步可能走的6个方向遍历,如果在迷宫中,且允许走,且没走过,就把visit置1。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
// max length is 10, consider '\0', is 11
const int MAX_N=11;
char line[MAX_N];
int n;
bool map[MAX_N][MAX_N][MAX_N], visit[MAX_N][MAX_N][MAX_N];
int direction[6][3]={{1,0,0},{0,1,0},{0,0,1},{-1,0,0},{0,-1,0},{0,0,-1}};
struct node{
    int x,y,z,d;
    node(int x, int y, int z, int d): x(x), y(y), z(z), d(d) {}
};
// start and end
node begin_pos(0,0,0,0), end_pos(0,0,0,0);
int BFS(){
    queue<node> q;
    q.push(begin_pos);
    visit[begin_pos.x][begin_pos.y][begin_pos.z]=1;
    while(!q.empty()){
        node n1=q.front();
        q.pop();
        int x1=n1.x, y1=n1.y, z1=n1.z, d1=n1.d;
        // return at end position
        if(x1==end_pos.x && y1==end_pos.y && z1==end_pos.z)
            return d1;
        // 6 directions
        for(int i=0; i<6; ++i){
            // new position
            int x2=x1+direction[i][0], y2=y1+direction[i][1], z2=z1+direction[i][2];
            // in map && reachable && not visited
            if(x2>=0 && x2<n && y2>=0 && y2<n && z2>=0 && z2<n && map[x2][y2][z2] && !visit[x2][y2][z2])
                q.push(node(x2,y2,z2,d1+1));
                visit[x2][y2][z2]=1;
        }
    }
    return -1;
}
int main(){
    // "START"
    while(scanf("%s",line)!=EOF){
        memset(visit,0,sizeof(visit));
        scanf("%d",&n);
        for(int z=0; z<n; ++z){
            for(int y=0; y<n; ++y){
                // read a line
                scanf("%s",line);
                for(int x=0; x<n; ++x){
                    if(line[x]=='X') map[x][y][z]=0;
                    else             map[x][y][z]=1;
                }
            }
        }
        scanf("%d %d %d",&(begin_pos.x),&(begin_pos.y),&(begin_pos.z));
        scanf("%d %d %d",&(end_pos.x)  ,&(end_pos.y)  ,&(end_pos.z)  );
        // "END"
        scanf("%s",line);
        int result=BFS();
        if(result==-1) printf("NO ROUTE\n");
        else           printf("%d %d\n",n,result);
    }
    return 0;
}