Task

Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.

Example

  • Example 1:
1
2
3
4
5
6
7
Input: root = [3,1,4,null,2], k = 1
   3
  / \
 1   4
  \
   2
Output: 1
  • Example 2:
1
2
3
4
5
6
7
8
9
Input: root = [5,3,6,2,4,null,null,1], k = 3
       5
      / \
     3   6
    / \
   2   4
  /
 1
Output: 3

Follow up: What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?

Constraints:

  • The number of elements of the BST is between 1 to 10^4.
  • You may assume k is always valid, 1 ≤ k ≤ BST's total elements.

Solution

  • BST的性质是左子树的所有节点一定小于根节点,右子树的所有节点一定大于根节点。要按大小顺序遍历则选择中序遍历,即先看左子树再看根节点再看右子树。本质上是在BST上做DFS

用队列存储遍历结果

  • 中序遍历时每经过一个节点就将其放进队列中,遍历完成后整个队列是升序存储,pop掉前k-1个就得到第k大的
  • 也可用vector存储队列
  • 时间复杂度:由于要遍历一次,故O(n)
  • 空间复杂度:用额外队列存储所有元素,故O(n)
  • 实现:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
// Runtime: 32 ms, faster than 50.85% of C++ online submissions for Kth Smallest Element in a BST.
// Memory Usage: 24.2 MB, less than 6.67% of C++ online submissions for Kth Smallest Element in a BST.
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int kthSmallest(TreeNode* root, int k) {
        queue<int> q;
        //dfs遍历,得到升序队列
        dfs(root,q);
        //去除前k-1个元素
        for(int i=0;i<k-1;++i)
            q.pop();
        return q.front();
    }
private:
    void dfs(TreeNode *root,queue<int> &q){
        //dfs的递归终点是空节点
        if(!root) return;
        dfs(root->left,q);
        //每次看到一个节点就存进队列中
        //由于是中序遍历,故这一操作在遍历左子树之后,遍历右子树之前
        q.push(root->val);
        dfs(root->right,q);
    }
};

用计数取遍历结果

  • 用纯递归实现中序遍历求第k大的节点:
    • 首先走到最左边的节点,即最小节点
    • 维护一个计数,其初始值为k,每看一个节点就计数递减,减到0时返回该节点值
  • 时间复杂度:由于要遍历一次,而计数减为0时结束,故O(k)
  • 空间复杂度:取决于递归深度,最好是完全二叉树O(logn),最差是链表O(n)
  • 实现:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// Runtime: 20 ms, faster than 95.47% of C++ online submissions for Kth Smallest Element in a BST.
// Memory Usage: 24.1 MB, less than 6.67% of C++ online submissions for Kth Smallest Element in a BST.
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int kthSmallest(TreeNode* root, int k) {
        //调用递归函数
        return inorder(root,k);
    }
private:
    //递归中序遍历
    int inorder(TreeNode *root,int &k){
        //以下两行的含义是一直往左走直到root的左子节点为空,终止递归
        if(!root) return -1;
        int x=inorder(root->left,k);
        //若此时k减到0则左子树中找到第k大的节点
        if(k==0) return x;
        //看到根节点,k继续减,若此时k减到0则根节点是第k大的节点
        if(--k==0) return root->val;
        //继续查找右子树
        return inorder(root->right,k);
    }
};
  • 另一种实现(更易理解):
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
// Runtime: 24 ms, faster than 86.06% of C++ online submissions for Kth Smallest Element in a BST.
// Memory Usage: 24 MB, less than 6.67% of C++ online submissions for Kth Smallest Element in a BST.
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int kthSmallest(TreeNode* root, int k) {
        //初始化计数成员变量
        cnt=k;
        inorder(root);
        return res;
    }
private:
    //中序遍历时维护计数成员变量和结果成员变量的值
    void inorder(TreeNode *root){
        if(root->left) inorder(root->left);
        //计数减为0时当前节点的值即为所求
        if(--cnt==0){
            res=root->val;
            return;
        }
        if(root->right) inorder(root->right);
    }
    //两个成员变量维护计数和结果
    int cnt=0;
    int res=0;
};